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Abstract--The deposition rate of a condensible substance from, say, flowing combustion products to 
"cold" solid surfaces can be strongly influenced by the simultaneous presence of a particulate aerosol since 
the particles can: (a) "scavenge" vapor, thereby influencing the vapor deposition rate; and (b) thermo- 
phoretically drift to the cold surface, carrying their inventory of scavenged condensate. A rational, yet 
quite tractable thermophysical model of these nonequilibrium processes is developed here for high 
Reynolds number laminar stagnation region boundary layer flow, and implemented to the point of 
calculating and displaying the effects of mainstream particle loading, vapor loading and particle size on 
the deposition rate of condensible material at surface temperatures well below the vapor dew point. 
Despite the complexity of this multiphase flow situation, our theoretical model is quite general and is cast 
in terms of dimensionless parameters which dictate the importance of vapor-phase scavenging and particle 
thermophoresis, as well as the Kelvin (surface tension) effect in modifying the submicron particle 
(free-molecule) growth law. Illustrative numerical results are displayed for the deposition of alkali 
sulfate-like vapor from the combustion products of hydrocarbon fuel (or coal) with air, including the 
interesting "structure" of such nonequilibrium multiphase boundary layers. As a useful by-product, our 
results reveal which combinations of particle-phase parameters cause (a) previous "uncoupled" 
vapor/particle deposition rates to be approximately valid as well as (b) recent local vapor/condensate 
equilibrium limit results to be sufficiently accurate. We conclude with an outline of straightforward 
extensions of the present theory to include such factors as: (i) a nonuniform (polydispersed) particle size 
mainstream aerosol; and (ii) size-dependent particle thermophoretic diffusivity; which are likely to be 
important in current or future engineering applications. 

1. I N T R O D U C T I O N - - M O T I V A T I O N  

The performance of engineering equipment exposed to high-temperature gases containing both 
suspended particulate matter ("dust") and condensible vapors is determined, in part, by deposition 
phenomena, which can lead to fouling and/or corrosion (e.g. Rosner & Atkins 1983; Rothman 
1985). Even relatively recent work in the areas of submicron particle deposition (e.g. Goren 1977; 
Walker et al. 1979; Grko~lu & Rosner 1985; Rosner & Kim 1984) and vapor deposition (Rosner 
et al. 1979) has, for simplicity, imagined that these processes are separable, i.e. noninteractive. 
However, very recently we have developed a quantitative theoretical explanation of experimentally 
observed deposition rate reductions experienced by highly cooled surfaces due to near-equilibrium 
condensation processes occurring within the gas near the deposition surface (Castillo & Rosner 
1988a-c; Liang et al. 1988). Actually, in most engineering applications it is not immediately evident 
whether vapor/condensate equilibrium (VCE) can be achieved within such two-phase boundary 
layers (BLs). A more comprehensive theory of such situations would not only yield explicit 
dimensionless criteria for "nearness to VCE", but would also enable the calculation of fully 
nonequilibrium vapor/particle transport situations--including the important effect of suspended 
aerosol particles on the rate at which condensible material arrives at the cooled surface (Rosner 
& Liang 1988). Our goal here is to develop a rational, but quite general and tractable mathematical 
model for accomplishing these seemingly ambitious goals. 

1. I. Outline o f  the Present Paper 

In this paper we present a tractable nonequilibrium theory of the deposition on "cold" surfaces 
of unary dilute vapors in high Reynolds number two-dimensional stagnation flow configurations. 

tOn leave of absence from Department of Fundamental Physics, U.N.E.D., Madrid, Spain. 
:~To whom all correspondence should be addressed. 

99 



100 J, L. CASTILLO and D. E. ROSNER 

Of particular interest are conditions such that the vapor becomes supersaturated within the laminar 
thermal BL and a "monodispersed" (single-size) group of fine particles (perhaps impurities which 
serve as condensation nucleii) scavenge vapor in their transit across the supersaturated portion of 
the thermal BL. We demonstrate the importance of thermophoretic forces that drive particles 
(and the material condensed on them) toward the cold surface, thereby contributing to the total 
deposition rate of condensible material. The assumptions underlying our nonequilibrium, two- 
phase theoretical model and its ancillary basic equations are first enumerated in section 2. In section 
3, our analytical and numerical methods are presented. Representative numerical results are then 
given in section 4. In section 5 some model generalizations are indicated. Section 6 summarizes 
our main conclusions and their implications with regard to the design and interpretation of 
experiments underway in our laboratory (Rosner & Liang 1988), and for operating equipment. 

2. THERMOPHYSICAL MODEL AND GOVERNING EQUATIONS 

2.1. Underlying Assumptions 
To simplify the mathematical problem and at the same time to retain the most important 

characteristics of the system, the following assumptions (discussed further in section 4) will be 
made: 

A.1. We restrict ourselves heret to systems in which the total amount of condensible material 
and solid particles is very small with respect to the amount of noncondensible (host) gas. Therefore, 
the velocity and temperature fields are not affected by the different processes (condensation, 
deposition etc.) the relatively small amounts of condensible material and particles undergo. 

A.2. We assume steady laminar flow and make the usual BL approximations. Moreover, to 
eliminate the need to deal with coupled partial differential equations, self-similarity will be assumed 
(e.g. Schlichting 1968). In the problem of concern to us here, forced convection dominates 
buoyancy-induced convection (which is neglected). 

A.3. Thermophysical properties of the gas (e.g. momentum and thermal diffusivities) will be 
considered constant and equal to their values for the carrier gas at mainstream condition (see, for 
example, section 4). Also, transport properties for the vapor (diffusion coefficient) and particles 
(thermophoretic coefficient) will be taken as constant. Lastly, the total system will be considered 
incompressible, i.e. the total density taken as approximately constant. 

A.4. Thermal diffusion (Soret effect) is neglected for the vapor (Rosner 1980). Thus, the difference 
between the carrier gas and the vapor velocities is assumed to be only due to the diffusion flux 
of the vapor down its own concentration gradient. Also, we assume that the condensible vapor 
behaves as an ideal gas. 

A.5. Solid particles do not exhibit appreciable Brownian diffusion and the difference between 
their velocity and the carrier gas velocity is dominated by the thermophoretic velocity of the 
particles. At each position within the BL this thermophoretic velocity will be equated to that 
corresponding to an isolated particle in a uniform gas flow with the same local temperature 
gradient, that is (e.g. Talbot 1981): 

VT = ~T Dp / (grad T T)], Ill 
where aT is a dimensionless "thermal diffusion factor". Actually, Dp is included here just to 
emphasize the similarity between [l] and a diffusion velocity. In fact, the value of the "thermo- 
phoretic diffusivity" aTD p does not really depend on Dp (which, in fact, is taken to be zero in our 
analysis); rather, it depends on the gas momentum diffusivity, particle Knudsen number and 
particle- and carrier gas-thermal conductivities; being aTDp ~--0.54v, irrespective of the particle 
radius and thermal conductivity for particles whose radius is much smaller than the mean-free-path 
of the gas molecules (Talbot 1981). This remarkably simple limiting case provides a useful first 
approximation for the magnitude of ~rDp, and motivates our introduction of the dimensionless 
parameter a = aTDp/V in the analysis that follows. 

tHeavily loaded multiphase BLs, including thermophoretic mass  transport,  of  importance in the manufacture of  optical 
wave guides, have recently been treated by Rosner  & Park (1988; Park & Rosner  1988; Park 1987). 
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A.6. When the dispersed particles are in a region in which the vapor is supersaturated, each is 
able to capture vapor in accord with the free-molecular-regime law: 

- ( R T  - y/2.[to ~ _ ogevq~T, r - ) ]  [2] gtm/9 

where i is the growth rate of particle radius associated with vapor capture; ~rn is the mass 
accommodation (condensation) coefficient (at most, unity); p is the prevailing gas density; and PL 
is the density of the condensed material (condensate particle mass divided by its volume). PL should 
not be confused with the dispersed condensate "phase" density Pc; i.e. the condensate mass per 
unit total volume (particles plus gas). In [2] we have implicitly used the assumption of condensible 
vapor ideality via the relation between local vapor mass fraction, Ogv, and the partial vapor pressure 

Pv: 

"(R T)" [31 

o)~{:T, r-} is the vapor mass fraction at which a particle of radius r would be in equilibrium with 
the surrounding vapor. Using [3] and Kelvin's equation, it is given by 

co~qxcT, r-} = COy Fir, oo-}. exp [41 
pL RTr  ' 

where the multiplier ~o~q{-T, r = oo-} is the equilibrium vapor mass fraction over a flat condensate 
surface (r = oo) at temperature T. Taking into account [3] and the temperature dependence of the 
equilibrium vapor pressure over a flat layer of condensate (Clausius-Clapeyron), hereafter we use 

~o~"~T, oo-} = const .exp [5] - - g -  , 

where const and A are each specific to the vapor considered (A being the molar heat of 
vaporization). 

2.2. Host (Carrier Gas) Flow Field 

As indicated in section 1.2, we consider the two-dimensional stagnation point (Hiemenz) flow. 
This corresponds to a steady flow which arrives from the y-axis, impinges on a flat solid wall placed 
at y = 0, where it divides into two streams near the wall, leaving in both ( _+ ) directions. The 
external (inviscid) velocity distribution in the neighborhood of the symmetrical forward stagnation 
"point" (at x = y = 0) is given by (e.g. Schlichting 1968): 

x 
\ dx )x = 0 [6] 

In the immediate vicinity of the solid wall, viscous (momentum diffusion) effects become 
important and, for a Newtonian fluid, the velocity field must satisfy the well-known two- 
dimensional BL equations: 

Ou Ou due 02u 
+ = + VTjy t71 

and 

t3u Ov 
a x  + = 0 [81 

with boundary conditions: u = 0 (no slip) and v = 0 (no blowing) at y = 0 and u = ue{x~ at y = oo. 
Introducing the "stretched" dimensionless ordinate 

\ dx )x = o d [9] 
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and a stream function given by 

rv/ uo] 1 ,,, q,+x,y-} = L \ dx /x=0U "f{q-)- 'x [101 

the equation of local mass conservation [8] is automatically satisfied and the velocity components 
become 

u = ~ = ue{:x~' f '{:q-} [111 

and 

v - - "f-~rl-), [12] 
ax L \dx/x=0j 

where above, and in what follows, primes denote differentiation with respect to q. Introducing these 
expressions into the x-momentum balance equation [7], the following well-known nonlinear 
third-order (Blasius) ODE for f~q-}  is obtained: 

with the boundary conditions: 

f "  + i f "  + [1 - (f,)21 = 0 [13] 

f = f '  = 0 @ q = 0 [14] 

f '  = 1 @ r/ = oo. [151 

Notice that our assumptions of constant thermophysical properties and low vapor/condensate mass 
loading allow f(-~/-} to be determined independently of the temperature and mass-fraction fields 
discussed below. Indeed, we will make use of previous numerical computations of this well-known 
(Blasius) function (Schlichting 1968). 

2.3. Temperature  Field 

In the steady state, using laminar BL approximations A.2 and A.3, the PDE which governs the 
temperature distribution T4rx, y )  is 

0T aT 82T 
u~--~x + ~ = ~h 0y2, [16] 

~h being the heat (thermal) diffusivity. Defining 

T 
0 - [17] 

when the wall temperature, Tw, is held constant, the ODE for O+rl~- becomes 

O" + Pr.f(-~/-) O' = 0 [18] 
subject to the boundary conditions 

0f0-} = 0 w = ~-~, Ofoo) = 1, [19] 

where Pr is the host gas Prandtl number, v /%.  The solution can be written in the following 
quadrature form (e.g. Spalding & Evans 1961): 

[ fo ] e x p - P r  f(-~-}d~ dq~ [20] 

where f~r/-} is defined by [13]-[15] and 

6x = ~ exp[-- Prf0%+~-} d~ ] dq~. [21] 
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For a description of the computation of 6r see, for example, CastiUo & Rosner (1988a), section 
3.1. For Pr = 0.7 (e.g. air) we find 6 x = 2.01669. 

2.4. Mass Fraction Equations 
Now consider that in the mainstream there is an undersaturated condensible vapor with mass 

fraction a~v.® and Np.~ "foreign" particles per unit volume, each with the same radius,~" ro~. If the 
wall temperature is sufficiently low the vapor will become supersaturated within the thermal BL 
and the particles will be able to scavenge some vapor in this saturated region in accord with the 
particle growth law given by [2]. Under these circumstances, the mass fraction of condensible 
material actually attached to the particles (relative to the total density) will be given by 

4 3 = PL "3 n(r - r 3 ) ' N p .  [22] ~oc 7 

Of course this condensed material will be transported with a velocity corresponding to the particles, 
% = v + Vx; the thermophoretic velocity, vx, being given by [1]. Under assumptions A.1-A.5, the 
coupled BL equations describing local conservation of condensible material in the vapor phase, 
cov- Pv/P, and in the dispersed condensate phase, ~o¢ = Pc~P, can be written (Castillo & Rosner 
1988a): 

+ = D~ [23] 
u--ff-~x Oy2 p 

0co¢ 0m___5 = dvr ~" 
u--~- x + (v + VT) dy - C°c ~ + --,p [24] 

where i "  denotes the mass of vapor locally scavenged by the particles per unit time and volume. 
The local number density of particles, Np, must also satisfy an equation similar to 

[24] but without the source term; i.e. in the absence of particle coagulation~ or break-up 
div (-(v + VT)'Np) = 0 so that: 

uC3Np ~Np - N  ~VT [25] 
OX + (v + vT) -Oy = "" p Oy " 

The particles grow due to the capture of vapor along their own streamlines. Thus, 

i = Vp" grad r, [26] 

where i (-local state-) is given by [2]. Using [1] and the results of sections 2.2 and 2.3 we find 

_{du~)  ( f  ~¢ dO).d~" [27] 
Yp" grad r = \ d x  x = o" + 0 "d-q~ 

It should be mentioned that if more general "wedge-flows" were considered [recall that 
two-dimensional stagnation point flow is a particular case of the steady flow of a fluid past a wedge 
of opening angle nfl (Schlichting 1968)], the requirement that the r.h.s, terms of [27] and [2] must 
be equal would exclude the possibility of self-similar solutions, except for the two-dimensional 
stagnation point flow. For this reason, according to assumption A.2, we have restricted ourselves 
to the latter case. Using [27] and [2] in [26] we obtain the interrelation 

ot dO~ dr P (d:.'~____:.l .[co,-o~(-T,r~]. [28] 
+ ] ' T ,  = pL 

\ d x  /x=o 

Using the value of co c given by [22], together with the equation for Np, [25], the value of dr/dq 

tThis assumption is readily relaxed in order to deal with a distribution of particle sizes in the mainstream (see section 5). 
:~In applications with high particle mass loading BL coagulation cannot be neglected (Park & Rosner 1988). 
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given by [28] and the results of  sections 2.2 and 2.3 in [24], we find that the local condensate source 
strength is given by 

f R T  "~t/2 
r "  = 41tr2 p ~m - -  ~ , 2 ~ , }  [~Ov - o,v~r, r~].U,. [291 

At this point it is convenient to rescale all dependent variables with respect to their values in the 
mainstream. Thus, defining n =- Np/Np,~, h = r/ro~ and D.v --- co~/m . . . .  from [25] the first ODE for 
n takes the simple form 

dn 
A ~ + Bn = 0. [30] 

Also, from the Eulerian form of the particle growth law, [28] becomes 

dh 
A . . . .  CO ,:2. [f~, _ f~ ( -  0, h-}]. [311 

dr/ 

Taking into account the value of i ' '  given by [29], from [23] we find that f~v - ~o~/COv.~ must satisfy 
the second-order linear inhomogeneous ODE: 

d2f~v Sc.f.df~v dr/-----T + dr/ = 3Sc" CLnh20 ~/2[f~v _ f~p(-0, h-}]. [32] 

In the above equations we have introduced the following dimensionless functions: 

dO 
A(r/-)- - ffr/-} + 0 '  dq [33] 

and 

0~ dO ( P r . f +  1 d0"~; [341 
B(-r/-)- - --~" d--~" 0 dr/ /  

and the dimensionless parameters 

C =  
~m D ( RT~ "~ ~/2 

\2r~M~J "~o~,~ (duo  
r~k dx ]~=o 

4 3 
PL ~rcr~.Np,~ 

L = 
P Ogv,oo 

Defining a dew point temperature, Tap, such that 
eq ~ ,  ¢.Ov, ~ =CO v {-Tdp , r = 

we can write 
¢q ~ _ K ~  

n~qxcO, h-) = f2v (0, oo-).exp 

with: 

1 1  ox,[ 
Here the parameters K, 0ap and L~ are defined by 

2aMy 
K =  

pL RT~r~ '  

Odp ~ Tdp 
T~ 

and 
A 

(RT~o)" 

[35] 

[36] 

[37] 

[38] 

[39] 

[40] 

[41] 

[42] 



A NONEQUILIBRIUM THEORY OF SURFACE DEPOSITION 105 

The parameter C is a Damk6hler number (see Rosner 1986) related to the scavenging power of 
each particle, L is a measure of the relative mass loading of the foreign particles in the mainstream 
(calculated as if they had the density PL) and K is a measure of the importance of the Kelvin effect. 
When K < 1, the exponential term in [38] can be approximated by unity, i.e. the Kelvin effect 
(increase of equilibrium vapor pressure over a curved condensate surface) becomes negligible. 

The system of equations [30]-[32] for n, h and D~ must be solved subject to the following 
boundary conditions: 

@ ~ = 0 f~ = t~(-Ow, h = oo-} [43] 

@ r / = ~  f ~ = n  = h = l .  [44] 

The boundary condition [43] establishes that the vapor at y = 0 is at thermodynamic equilibrium 
with the material deposited on the wall. The solution of [30] can be written in the form of a 
quadrature: 

n =expC ~ °~ B~tpff 1 L J .  ~ dip . [45] 

Interestingly enough, this equation can be solved independently of the other two because we have 
assumed that the thermophoretic diffusivity parameter ~ is insensitive to particle radius. 

The normalized mass fraction of condensed material, D~ = 09¢/co . . . .  (locally attached to the 
particles) is given by 

O~ = L .  (h 3 _ 1). n. [46] 

By assumption, the foreign particles do not sublime in the gas, therefore the above set of equations 
must be solved subject to the condition that h cannot be smaller than the mainstream value unity. 

The local mass deposition rate of condensible material in vapor form onto the wall will be given 
by 

/a~ , \  P F fdu¢'~ 1 '/2 dfl. 
-J"w=pD~[-~Y),=o=--" v - -  ' dnl.=0 Sc L ~.dx)x=oJ O v . - - - ,  . [471 

a result independent of specific location along the wall. If  we define a dimensionless vapor 
deposition rate J~ ,  given by 

_ ,  l-,, Jv-p~,v,--  L kdx/x=O/  6 ( ~j~tw ) [48] 

then, from [47], 

1 dfl~ ,=o" [49] J v = Sc  d--~ 

If  the particles have been able to capture some vapor in their transit across the thermal BL upon 
arrival at the wall, the condensed material attached to them, of course, contributes to the total 
deposition rate. Owing to our definition of f~c, this contribution is given by 

F ( uq , - o .  
--J'c'.w = --(p~VT)Iy=0 = PLVk~--~x ix=0_1 6T0w ~t~Ov.=" f~XCn = 0-). [50] 

If we now define the dimensionless deposition rate of condensed material by 

_ l  
J°=--po~..__ L \ d x  /x=ol 

[51] 

then, using [46], we find 

1 -- 0w. ~tL [(h 3 _ 1). n ]n = 0. [52] 
J c =  ~T0W 

In displaying our results for the structure of nonequilibrium two-phase BLs it will be useful to 

MF. 14/I--G* 
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display the local rate at which the particles scavenge vapor. For this purpose we introduce a 
nondimensional local vapor scavenging rate by the particles: 

t~t 

Q" ==- f du¢'~ " [53] 
P(-Ov oo I - - I  

" \ d x  ]~=o 
Using [29] we find 

t~"~:~l ~ = 3 CLnh 20 ~/2. [f~v - f ~  (-0, h-)], [54] 

which is seen to be equal to the r.h.s, of  [32] divided by the vapor/mixture Schmidt number, Sc. 

3. A N A L Y T I C A L  RESULTS AND N U M E R I C A L  M E T H O D S  

If we solve [32], with the boundary conditions for fL, given by [43] and [44] and with the r.h.s. 
of the equation set equal to zero, and it turns out that f~ < f~(-0,  1-} everywhere, then clearly no 
vapor can be captured by the foreign particles in their transit across the BL (i.e. ~: given by [2] is 
never positive). In this case, the solution obtained by setting the r.h.s, of  [32] equal to zero, would 
be the actual solution. Under such circumstances particles and vapor each deposit on the wall, but 
they do not interact with each other. This noncondensation case has already been studied (e.g. 
Castillo & Rosner 1988a) but, for completeness, a brief indication of the solution is given in section 
3.1. 

The most interesting cases for the present study, in which t'L becomes larger than D.~q~0, 1-) 
somewhere in the BL (corresponding to local "supersaturation" and the possibility of  vapor 
scavenging), will be studied in section 3.2. 

3.1. No Boundary Layer Condensation Case 

When the particles are unable to scavenge vapor, the normalized vapor mass fraction, D~, must 
satisfy [32] with the r.h.s, set equal to zero. The solution can be written in quadrature form (e.g. 
Castillo & Rosner 1988a): 

f~  = tav.w + (1 - f~ .w) ' r~ ,  O~ [55] 

with 

and 

1 " Scfffxc~_).d~ ] [56] r ~ , ,  ~ = 6 ~ f ~  exp I -  d~p 

6v{-~b-} = exp - S c  ~-}.d d~0. [57] 

Note that in the limit ~b = 0, ~v(~b) is equivalent to 6x with Sc replacing Pr. According to the 
boundary condition, 

nv.w = nv~(-Ow, h = ~ .  [581 

Thus, the dimensionless vapor deposition rate, given by [49], becomes 

l - n ~ q ~ 0 w ,  h = ~-} 
/ ~  = , [59] 

S c - 6 v ~ c 0  -) 

which can easily be calculated once the parameters 0dp, .W and Sc are specified. It is clear from 
[39] that J v  is negative for 0 > Oap (if there exists a condensate layer on the wall it will evaporate 
at the rate given by [59]) and positive for 0 < Oap; i.e. Tdp = Oao To~ represents the conventional dew 
point temperature. 6v~0-} depends only on the vapor Schmidt number, and a description of the 
computation of  6~0-} for any value of Sc can be found in Castillo & Rosner (1988a). 

3.2. Condensation (Heterogeneous Nucleation) Within the Boundary Layer 

Let us assume that at a certain position r/, inside the thermal BL f~v = ~q{-0, 1~, being 
f~v < f~q{-0, 1-)- for r />  r/fl, and the particles are unable to capture vapor in this region and 
t~v/> f~q(-0, 1-} for some value of  ~/~< r/, [note that due to the boundary condition at the wall, 
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f~,w < f~q{-0w, hw-) (when K ~ 0) and owing to the Kelvin effect the particles have to lose some of 
the captured vapor in the immediate vicinity of the wall]. For r />  r/n the r.h.s, of  [32] must be set 
equal to zero, and the solution is 

nv = f~v,. + (1 -- D.~,.).F(-r/, r/.-}, r/ t>r/., [60] 

with F{-q, r/n-) given by [56] and f~v,, = f~P4C0n, 1-}. 
Continuity of  condensible material flux across the locus r /=  r/, implies that dt~/dr/ is  continuous 

at r /=  r/, (Castillo & Rosner 1988a). Thus, from [60]: 

d ~  1 - -  ~ ' v , n  
dr/ ,. = 6~-~q-~" [61] 

For analyzing conditions in the region r/~< r/n, we denote 

and 
dflv y -  
dr/ 

Equations [31] and [32] can be transformed into the following ODE system: 

X ' = Y  

Y' = - S c . f Y  + 3 Sc-C .L IX - fl~q~0, h)] n 0 I/2 h 2 

h" = - c o  '/2. { x  - ~q~:o, h~}  . 
A 

with boundary conditions at r/n: 

and the final condition at r /=  0: 

[62] 

[631 

[64] 

[65] 

[66] 

(Otherwise f}v would be larger than fly(-0, 1-} for values of  r />  r/.). Using [60], we find 

1 - -  t ~ ( - 0 . ,  1 )  

IdD~q~0, 1-} dO ' T.I°=.° 

[74] 

[75] 

d 

X = D~qxC0w, oo). [70] 

Here 04:q) will be given by [20] and the n(-q-} by [45]. The dimensionless deposition rate of 
condensible material in vapor form, J v  then becomes 

~'(-'7 = 0-) 
J v  = Sc [71] 

The contribution due to the material condensed on the foreign particles is 

L[ (h~-  1)nw] 
J c  = (1 -- 0w) • [72] 

(rT0w) 

and the total dimensionless deposition rate of  condensible material is then given by 

J = J v  + J c .  [73] 

It is interesting to note that at r /=  r/n, 

X = f~q{-0n, 1-) [67] 

y _  (1 - X )  
6v4:q.) [68] 

h = 1; [69] 
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Therefore r/. must be larger than, or equal to, the smaller value of r/for which the above inequality 
is satisfied. 

On the other hand, in the limiting case when K = 0 (and then f~v'q(-0, h-} does not depend on the 
particle size h) condensation within the BL is only possible when 

d ( 
dr/~ f~(-0,  c~-}] "/ @ r/ = 0, [76] 

with £~v~r/-} being the value when condensation is not allowed, given by [55]. For K > 0, [76] is 
a necessary, but not sufficient, condition for BL condensation. 

The following method of  solution has been used: the function f~r/-)- is well-known [see, for 
example, the tabulation in Schlichting's (1968) book]. When the value of f is required at a 
nontabulated value of r/, it was calculated using a local Taylor expansion using the values off ,  f ' ,  
f "  and the corresponding value o f f "  from [13] at the closest tabulated value of  r/. The values of  
OxCq~, dO~dr~ and n~r/-), when necessary, were obtained from [20] and [45] with the integrals 
calculated using Simpson's algorithm. 

Our procedure to obtain the deposition rates, for given 0w and mainstream conditions, is as 
follows: 

1. If  the inequality [76] is not satisfied, BL condensation is not possible and the 
dimensionless deposition rate, i v ,  is simply calculated from [59]. 

2. Otherwise, the smaller value of  r /for which [75] is satisfied (with the equal sign) 
is calculated and initially assumed that this was the value of  r/, at which 
condensation begins. 

3. Given the value of  r/., system of first order ODEs [64]-[66] is then numerically 
integrated using a fourth-order Runge-Kutta  method, starting at r /=  r/, (with 
initial conditions given by [67]-[69] and ending at the wall (r /= 0). 

4. Once the wall is reached, the condition [70] is checked. It can be shown that 
X~:r/= 0-) is an increasing function of  the chosen value of r/,. Therefore, if 
X~r/ = 0-) < ~eq (-0w, O0) a new larger value of r/, is chosen and Step 3 is repeated. 
If X4:r/= 0-)> f~q(-0w, ~ - )  the numerical step used in the variation of r/, was 
reduced and the former value of r/, again considered coming back to Step 3. In 
the particular case when X(-r/= 0-) > t'l~q{-0w, ~ -~ for the initial value of r/. given 
in Step 2, BL condensation is not possible (note that [76] provides a necessary, 
but not sufficient, condition for heterogeneous nucleation onset) and Atv is given 
by [59]. Otherwise, Steps 3 and 4 are repeated until [70] is satisfied to the required 
precision. 

5. For the value of r/., for which [70] is satisfied, the value of J~  is calculated from 
[71] and J c  from [72]. The total dimensionless deposition rate under these 
conditions is then the sum: Jc  + J~.  The absolute mass deposition flux (e.g. 
mg/cm 2 s) corresponding to this dimensionless sum is then calculated by multi- 
plication with the reference mass f lux [v (due/dx)x = o]~/2" pOgv, ~ appropriate to the 
application of interest. 

4. RESULTS AND D I S C U S S I O N  

Our main concern here is the influence on deposition rate of the three mainstream particle-related 
parameters: C, L and K. It is clear from [32] that the limit CL tending to zero (and also the limit 
K tending to infinity for any value of  CL) corresponds to situations in which the mainstream 
particles do not scavenge vapor at all and the corresponding solution will be given by the equations 
(re-)presented in section 3.1; in this limit denoted hereafter as frozen (sink-free) boundary layer 
(FBL), the only place vapor condensation occurs is on the macroscopic surface (target) located at 
t /=  0. On the other hand, in the limit K = 0 and CL tending to infinity, the solution of  [32] is 
~v(-r/-} = f~qxco4~r/-~, h = oo-); i.e. the local consumption rate of  vapor in the region ~/ ~< q. is such 
that local thermodynamic equilibrium (between the vapor and the material condensed onto the 
drifting particles) is achieved. This case will denote the local thermal equilibrium boundary layer 
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(LTEBL) limit. The abovementioned limiting cases were recently studied by Castillo & Rosner 
(1988a,c) and the corresponding results will be included here for comparison purposes. 

To simplify the presentation of  our nonequilibrium results, all other system parameters will be 
fixed at appropriate characteristic values (Rosner et al. 1979). For  applications, the most interesting 
cases are those in which the carrier gas is essentially air, therefore we have selected Pr = 0.7. Since 
we are mainly interested in the deposition of  alkali sulfate vapors from gas turbine or coal 
combustion products with To ~ 1500 K the value of  Z~' defined by [42] is - 22 (for Na2 SO4 vapors), 
LP _ 19 (for K2504). Accordingly, for illustrative purposes we will use the value ~ = 20. Also, a 
characteristic value of the Schmidt number for these dilute vapors in air is Sc = 1.8 and in this case 
the value of the dimensionless FBL thickness 6vxc0 -) defined by [57] is 6v{:0-) = 1.3991. The value 
of Tdp/To~ = Odp will be taken to be 0.8 and although for cooled walls Tw/T~ = Ow could formally 
vary from 0 to 1, our assumption A.3 (quasi-constant thermophysical properties) will fail for values 
of  0w which are too small i.e. gas density changes associated with temperature differences would 
become important). Thus, the smallest considered value of 0w will be 0.5.t Lastly, with respect to 
the normalized particle thermophoretic diffusivity ~txDc/v =_ ~, we will consider the value 0.1, which 
appears (Castillo & Rosner 1988a) to describe the experimentally studied deposition of  Na2SO4 
condensate particles. However, we will also present some results for ~ = 0.5 (a value close to the 
theoretical maximum for the free-molecular regime) and for the lower value, ct = 0.01. 

Figure 1 presents the predicted total deposition rate of  condensible material on the wall as a 
function of the normalized wall temperature 0w for the abovementioned values of the parameters 
and the particular case C = L = 1 for different values of the Kelvin parameter, K. The dashed line 
represents the corresponding deposition rate for the LTEBL-limiting case, and the dotted line gives 
the FBL limit. The vertical lines represent the separation between the noncondensation case 
(section 3.1) and condensation within the BL (section 3.2) that occurs at the lower wall 
temperatures. Note that an increase in the value of  K induces a "delay" in the beginning of vapor 
condensation onto the particles inside the BL. The corresponding wall temperatures at which 
particles start to scavenge vapor with the BL are 0w = 0.670 for K = 1, 0w -- 0.722 for K = 0.1 and 
0w = 0.738 for K = 0; these values do not depend on the value of C or L. This phenomenon is due 
to the minimum saturation ratio, s =Dv / f~{ -O ,h  = 1-) required for the particles to begin to 
scavenge vapor. From [38], this minimum value for scavenging is Smi. = exp xcK/O~l~r) and clearly 
increases with the Kelvin parameter K. Therefore this Smi, has to achieved within the BL for vapor 
scavenging to be accomplished by the particles. From its definition, [40], K ~ r ~ and, for instance, 
using the surface-tension data included in Janz et al. (1979), for Na2 SO4 at To = 1500 K, the Kelvin 
parameter is about 10 -3 when r~ = 1/~m and of order unity for r~ = 10 -3/zm [a particle size small 
enough for which, incidentally, assumption A.5 would fail due to the relative importance of  
Brownian (Fick) diffusion]. Also, with these data, we find C~lOlS/[r~(duJdx)~=o] and 
L ~ 109Np,~r 3, therefore L would be of order unity in the presence of  103 particles/cm 3 in the 
mainstream, while r~ ~ 1 #m. It is clear that even for K = 0.1 the difference from the limiting case 
K = 0, is very small. Therefore it seems that neglect of the Kelvin effect (i.e. taking K = 0) will be 
self-consistent and a good approximation for most cases of interest here. 

Figure 2 shows the total deposition rate of  condensible material on the wall for L = 1, K = 0 
and different values of  the single-particle scavenging rate (Damkrhler)  parameter C. Again, the 
dashed line represents LTEBL-limit results and the dotted line denotes FBL-limit results. Clearly, 
for very small values of  C the deposition rates tend toward FBL-limit values because the scavenging 
power of  the particles is very small; i.e. they are able to scavenge only a small amount  of  
condensible vapor during their thermophoretic drift across the supersaturated region (q ~< r/,). On 
the other hand, for larger values of C the results tend to LTEBL-limit values. It is interesting to 
observe that for some range of  C and 0w, predicted deposition rates even exceed the LTEBL- 
limiting value. The explanation of  this (remarkable) behavior will be given below in connection 

t G r k o ~ l u  & Rosner  (1984) compared numerical results for heat and mass  transfer in LBLs with and without property 
variations for vapors in air and proposed a simple correlation scheme. They showed that,  in general, for the range 
0.25 ~< TwIT e ~< 4 and for Lewis numbers  (D/Cth) < 1 (as in our case), the results for mass  transfer considering constant  
properties differ no more than 18% from the results using actual property variations. In particular, for K2SO 4 vapors 
in air, the difference was < 10% for the same range o f  temperature ratios. Thus,  even for the lower values of  0w 
we have considered the error we are making in the present analysis is acceptably small. 
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Figure 1. Total dimensionless deposition rate, 0,~, of 
condensible material on the cold surface as a function of 
the normalized wall temperature, 0,.  The following 
conditions apply to all the figures presented in this 
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figure, also: • =0.1, C =  1, L = 1. The dashed line 
corresponds to the LTEBL limit and the dotted line 

pertains to the FBL limit. 
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with our comments on figures 8 and 9. For large values of C and lower wall temperature ratios, 
0w, the deposition rates cannot be formally obtained with this model for reasons given below. 
Indeed, the present model should be supplemented for these cases, as indicated in the appendix. 

Figure 3 is equivalent to figure 2 but pertains to K = 1. The delay in the onset of condensation 
within the two-phase BL is indicated by the vertical lines. Again, for small values of C the total 
deposition rate tends to the FBL-limit values but, for larger values of C, tends to some limit that 
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Figure 3. Surface temperature dependence of the total 
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in this case does not correspond to LTEBL. This will be shown to be associated with the necessary 
build-up of Smi n inside the BL, as indicated above when K ~ 0. 

Similar results for C = 1, K = 0 and different values of the mainstream particle "loading" 
parameter L are plotted in figure 4. The trends parallel those indicated in figure 2, because, in fact, 
the abovementioned limits (FBL and LTEBL) are reached when the product CL tends to zero and 
infinity, respectively. 

In the present model, condensation of vapor within the BL occurs via "heterogeneous" 
nucleation and subsequent growth onto the pre-existing, thermophoretically drifting particles. In 
view of the results presented in the previous figures, it is interesting to inquire if the scavenging 
power of the particles is sufficient to avoid the possibility of homogeneous nucleation. In figure 
5 we plot the maximum value of the vapor saturation ratio, s = f~v/[flp(-0, h = ~-)], achieved 
within the BL for the conditions corresponding to figure 2 (i.e. L = 1 and K = 0). From the dew 
point temperature ratio 0w = 0.8 down to the wall temperature at which condensation within the 
BL begins (located at 0w = 0.738), Smax = 1 and this value is achieved just and only at the wall, as 
required by the boundary condition [43]. For lower values of 0w and the represented values of C, 
the particles are not able to scavenge all "available" vapor and therefore a supersaturated region 
indeed appears within the BL, with the maximum value of s increasing as 0w and/or C decrease 
(recall that at the wall s = 1, as imposed by the LTE boundary condition). For the lower values 
of C the results tend to FBL-limit values and for larger values of C, Smax departs slightly from unity 
[the LTEBL limit corresponds to a region of s = 1 around the wall but s never exceeds unity; see 
figure 4.2-3 in Castillo & Rosner (1988a)]. To examine the self-consistency of our model, we must 
now consider the minimum supersaturation required for homogeneous nucleation to take place. 
Rosner et al. (1979) estimated this value (for Na2 SO4-1ike species; see their figure 5.1) to be of the 
order of 10 for T = 1600 K but scat could be above 103 when T = 1000 K. Only when this minimum 
supersaturation for homogeneous nucleation is higher than the maximum saturation ratio achieved 
in the computed two-phase BL (figure 5) is homogeneous nucleation precluded and our present 
model self-consistent. In contrast, Ahluwalia & Im (1985) have presented a computational model 
in which the only condensation that takes place is via homogeneous nucleationf calculated 

"fHowever, their model is quite restrictive because, among  other assumptions,  they neglect the convective terms in the 
mass balance equations and they assume that  once nucleated, particles do not grow because the vapor is very dilute. 
But the growth rate of  a condensed particle depends on the local supersaturation level (and the latter even reaches 
the value 10 s in some of  their illustrative calculations). In a closely related, earlier analysis, Epstein & Rosner  (1970) 
showed that  once they are created, nucleated particles grow so rapidly that  the rate of  vapor consumption due to 
particle growth quickly becomes much  more important  than the contribution due to the generation of  new particles. 
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according to classical nucleation theory. This phenomenon could, of  course, be included in a 
generalization of  the present heterogeneous condensation model when Smax > (Scnt)h . . . . .  ~. 

The maximum saturation ratio within the BL is also plotted in figure 6 for L = 1, K = 1 and 
values of  the Damkfh le r  group C corresponding to the deposition rates presented in figure 3. When 
the normalized wall temperatures drop from the dew point value, 0w = 0.8, to the value 
corresponding to onset of  vapor  condensation on the particles for K = 0, 0w = 0.738, Smax = 1 at 
the cold wall, ~/= 0. For  lower 0w values, down to the onset of  condensation for K = 1 (at 
0w = 0.670), Smax > 1 somewhere within the BL (at a position that "leaves" the wall as 0w decreases) 
but is still lower than the minimum value required for condensation onto the particles [given by 
stain -~- exp~K/OJc~l-) -} corresponding to the situation in which f~v has reached the value 
t)~{0, h = 1-) and the pre-existing particles, with normalized radius h = 1, start to be able to 
scavenge vapor]. For  even lower wall temperatures the particles scavenge as much vapor as they 
can, reducing the value of Smax with respect to its value for an FBL. For the larger value of C 
considered, C = 102, the position at which Sm~x is achieved almost coincides with the position at 
which condensation onto the particles begins (located at r / =  ~/n, section 3.2). The line correspond- 
ing to C = 10 -l  would not be distinguishable from the value for C = 10 -2 on the scale used. The 
same reasoning concerning the possibility of  homogeneous nucleation described in our discussion 
of figure 5 and the breakdown of  the present model for this reason, is also applicable to figure 6. 

Another assumption underlying the present model is that the normalized thermophoretic 
coefficient • is insensitive to particle size. Talbot  (1981) and others have shown that in the transition 
from the free-molecule regime to the continuum region, 0t depends on the particle Knudsen number 
(equal to the ratio of  the gas kinetic mean-free-path to the particle diameter). Therefore it is prudent 
to study the size of  the condensate-enlarged particles arriving at the wall. This information is 
presented in figure 7 in which the normalized radius (h =-r/r~) of  the particles reaching the wall 
is plotted as a function of  the wall temperature for K = 0, and L = 1 (solid lines) or L = 0.1 (dashed 
lines), for different values of  the Damkrh le r  group C. Not  surprisingly, f rom the dew point 
temperature, 0w = 0.8, down to the surface temperature at which particles can start to scavenge 
vapor, 0w = 0.738, hw = 1; i.e. the particles arrive with their original size. Fo r  lower values of  0w, 
the "particle size upon arrival" hw, increases as 0w decreases until a maximum value of  hw is reached. 
Thereafter, remarkably enough, hw decreases. Anyway, the maximum increase in particle size (up 
to 4.5 times their original size) for the represented cases is not large enough to be a serious concern 
if the Knudsen number based on particle size at the wall is still large. Therefore, we conclude that 
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the assumption of  a size-insensitive normalized thermophoretic diffusivity, 0t, seems to be 
appropriate to our purpose. Actually, a dependence of  ~t on the particle radius (i.e. ~t(-h-}) could 
easily be introduced into a more comprehensive version of  our model (see section 5). 

As indicated in our comments on figure 2 (and also clear in figures 3 and 4) for larger values 
of the product CL the total deposition rate calculated formally as outlined earlier actually lies 
slightly below the value for the LTEBL limit and, for the lower values of  0w, our simple 
nonequilibrium model breaks down. This behavior can be explained with the help of  figures 8 and 
9, which depict the deposition rate in vapor form, J r ,  and attached to the particles (condensed 
form), J c ,  respectively, for a given wall temperature ratio 0w = 0.6 when the Kelvin effect is 
neglected (K = 0) as a function of  the product CL for various values of  the particle loading 
parameter L. In figure 8, the limiting values for j v  are also represented for an FBL (upper left) 
and a LTEBL (lower right) by a dashed straight line. These vapor values are respectively, 
J v  = 0.397 and J~  = 1.90 x l0 -3. When the rate parameter CL is small, the amount of  vapor 
scavenged by the particles is likewise small and J~  tends to the FBL limit. On the other hand, for 
larger values of  CL the results displayed have been terminated not for printing clarity but because 
the present model breaks down beyond a critical value of CL (which decreases as L decreases). 
The reason is the following: J v  reaches the LTEBL limit at a finite value of  CL and remains at 
this value for larger values of  CL. But from its definition [49] J v  ,,-dfL,/d~/[,=0 and J v  
(LTEBL) ,,- d£1~ q/dr/[, = 0. Therefore, as soon as j ~  reaches the LTEBL limit, flv and t ip  are tangent 
at ~/= 0 and upon increasing the value of  CL beyond that point (for L constant), a third region 
(not treated above) appears near the cold wall in which the particles are capable of taking more 
vapor than is locally available. Therefore in this third region (to be added to the two regions 
specified in section 3.2) LTEBL equilibrium is reached. Increasing the value of  the particle 
scavenging efficiency parameter C (keeping the loading parameter L constant) this third region 
detaches from the wall and increases in thickness until at some value of C it engulfs the second 
region (in this second region the particles scavenge vapor but cannot consume all available vapor 
and s > 1). This third region engulfs the second one and extends then from ~/n (beginning of  
condensation, section 3.2, which, in fact, is a decreasing function of C and L)  to the wall reaching 
the LTEBL limit in the whole region in which the particles scavenge vapor (that is, in fact, the 
LTEBL limit that we have been talking about from the beginning). For  this reason, as soon as 
J v  reaches the LTEBL limit the present model must be improved. In the abovementioned third 
region fly = £1~ q and [31] and [32] should be rewritten. The analysis of  this case, as an extension 
of the present model, is sketched in the appendix. 

Figure 9 depicts the deposition rate in condensate form J c  for a constant wall temperature ratio, 
0w = 0.6. The FBL rate is, of  course, J¢  = 0 and the LTEBL rate is J c  = 0.124, represented by the 
horizontal broken line on the r.h.s, of  the graph. The trends are rather remarkable since for a 
constant value of  L, J c  increases as C increases from the FBI value (J~ = 0) until it reaches a 
maximum and then decreases even below the LTEBL limit. The third region just mentioned, in 
which s = 1 throughout, appears and self-consistent calculations cannot be continued with the 
present model (see the extension indicated in the appendix). It is expected that J~ will grow again 
until it reaches the LTEBL value. The difference between the maximum value, the further minimum 
and the LTEBL limit increases as 0w decreases. 

In figure 10, the important local fields are represented for 0w = 0.6, C = l, L = 1 and K = 0. The 
existence of  the two different regions discussed in section 3.2 is displayed. For  r/>/r/n, the BL is 
frozen and particles cannot scavenge vapor (h = 1 throughout the region) and t)~ < fl$q. At ~/n, 
fl~ = fl~v q and the particles start to take on some vapor during their thermophoretic drift through 
this nonequilibrium BL, increasing their size from h = l at ~/= r/n to hw = 1.590. The local rate of  
vapor consumption, ~'(-r/-}, given by [54], is zero both at ~/n and at the wall, ~/= 0, because at both 
locations there is equilibrium; i.e. ~ v =  f~P. For  this reason the slope of  particle size variable 
h is zero at r/n as well as at the wall. t~  > ~'~v ¢q for 0 < ~ < ~n, leading to a saturation ratio which 
reaches the maximum value of  32.2 near the wall being s = l at both extremes of  the interval (recall 
that the value when r/--*0o (mainstream) is only so~ = 8.42 x 10-3). Keeping the value of  L constant 
and increasing the value of C, a third region would appear in the vicinity of the wall in which 
f~v = D.~q (i.e. s = l) and the vapor consumption is limited by the amount  of  vapor present rather 
than the scavenging power of  the particles. In this case, D.~" is positive at the wall as is the slope 
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of h. On the other hand, for K > 0, due to the wall boundary condition tlv = tl~q{-0w, h = oe-}, t)" 
and the slope of  h are negative at the wall and, to the boundary condition, the particles actually 
give up a portion of their condensate to the vapor. This interesting effect is actually very small in 
most of the cases studied here. 

Lastly, we present results for other values of  the normalized particle thermophoretic diffusivity 
~c Figure 11 depicts the total deposition rate for L = 1, K = 0  when ~t =0.01  (cf. figure 2). The 
results are rather similar to those presented earlier for ct =0 .1 .  However, for ~ = 0 . 5  some 
remarkable behavior is observed, as indicated by figure 12. Whereas the FBL and LTEBL results 
are very close to each other for a certain range of  0w values, for the calculated range of C values 
the predicted deposition rate is always smaller than the FBL value, and behaves in the manner very 
similar to the case ct = 0.1. It is expected that by increasing the value of the particle scavenging 
efficiency parameter C beyond the values considered here, these trends will reverse. The correspond- 
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ing total deposition rate will increase as C increases for a given value of 0w, upon the appearance 
of the equilibrium region (see the appendix), until the LTEBL limit is reached. 

5. GENERALIZATIONS OF THE PRESENT MODEL 

Some of the underlying assumptions specified in section 2.1 and used to generate the results 
discussed in section 4, can be relaxed, if necessary, leading to certain generalizations of the model 
that do not cause an excessive increase in complexity. 

In the present model the particle concentration field is not affected by the vapor field (the converse 
is not true). This is due to our assumption that the normalized thermophoretic coefficient ~ is 
insensitive to particle radius. Thus, once the normalized wall temperature is known, the particle 
density number is given by [45] and it is not affected by the amount of vapor condensing on the 
particles (through changes in particle size). As indicated in figure 7, depending on the values of 
C, L and 0w, the particle radius can increase to almost five times its original value and in the 
transition (free-molecule to continuum) range of the particle Knudsen number the associated 
change in 0t T can be important (Talbot 1981). Thus, the treatment of scavenging by larger particles 
in BLs at higher pressures could be accommodated by introducing an 0t(-h-} dependence. In such 
cases the particle concentration field would couple to the vapor field via ~h- )  and the only thing 
that would change in the formulation above is the value of the function B~r/-}, which would now 
be 

( l d 0 )  l d0dct dh 
B(-r/-)'=--~dO'0 dr/ a r . f + ~  -~ O d~I dh d~l" 

Using [31] this may be rewritten as 

*t dO ( p r . f  + l dO) C _ ,,2 dO d~ 
B(-r/)=-0d--~" 0d--~ A ~  O 

with A(-r/-} still given by [33]. As indicated at the beginning of section 3, the added r.h.s, terms in 
B4~t/-} should be set equal to zero for r/>/r/n (where particles do not scavenge vapor). Although 
the particle number density can still be formally written as in [45], with the new definition of B{-r/~ 
and for r/~< r/n it is now affected by the vapor distribution through the second r.h.s, term of B{r/) 
for r/~< ~/.. Moreover, the equation for n, [30], should be added to the system of equations [64]-[66] 
with the boundary condition 

ex I- f~o B o ~  
n{r/.-} = p LL 

with B0~-r/~ equal to the value of B(n/-} given by [34]. 
Another assumption in the present model is that all particles entering the BL have the same size. 

The more general case in which the particles in the mainstream are distributed among, say, discrete 
sets of particle sizes, can easily be accommodated. Let us assume there are Np.~ (i = 1 . . . .  N) 
particles with radius r,., respectively. Defining n = Np.i/Np.fl:y-,oo) and h~ = rffr~.oo the differential 
equation for n (the same for all particle sizes) is still [30] and its formal solution is given by [45]. 
The equation for each h~ is 

~,t-~ ~ = - cio ,/2. lay - ~ (-0, hi~], A 

with the obvious definition of Ci (with respect to the particle size r~,~). The only other required 
change would be in [32] for D.~, which would generalize to 

d212v {_ Sc.f. dtL 01/2 
dr/2 ~ = 3Sc.n • i = 1  C,L, h2~[Dv - D~q{-o, hi)], 

(with Li given by [36] but referring to the particle size class r~.~o). The value of i)~{0, h~-} is 

.~-(0, h,gX = .~q(-0, oo-)-" exp ( h K~.~ ) .  
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Note that when each Kelvin parameter Ki is very small (and the exponential term can be 
approximated by unity) for all particle sizes, the term [fg - gLcqi:0, h,vX] would not depend on hi and 
could be taken out of  the summation in the above equation for f~.  In such cases, it is clear and 
intuitively satisfying that the parameter determining the important limiting behavior in the vapor 
scavenging becomes ~=  ,CiLi. Thus, deposition rates will tend to the FBL limit when E~= iCiLi 
tends to zero and to the LTEBL limit when E~= ~CiLi is very large. 

6. CONCLUSIONS 

By exploiting recent developments in the understanding of particle thermophoretic drift across 
gas BLs we have developed and demonstrated a self-consistent yet tractable theory for predicting 
the effect of a mainstream particulate aerosol on the deposition of condensible material to a solid 
surface maintained well below the vapor dew point. Our thermophysical model is free of the 
limiting assumptions which have characterized previous treatments of such deposition phenomena, 
viz. separability ("frozen" vapor BL) or local vapor/condensate equilibriumt--indeed, our 
treatment provides as a by-product, useful quantitative criteria for the accuracy of these earlier 
simplifications in terms of  accessible thermophysical parameters describing the aerosol/vapor/ 
carrier gas/target system. More generally, the present theory is readily extended to describe the 
effects on stagnation region condensate deposition rate of  particles which: (a) are of  nonuniform 
size; and (b) have a size-dependent thermophoretic diffusivity--important extensions which will be 
the subject of follow-on studies at this laboratory. 

Particle-induced vapor scavenging effects in laminar boundary layers away from the forward 
stagnation region can also be numerically predicted with the present thermophysical model but we 
are then led to coupled partial differential equations rather than coupled ordinary differential 
equations. The present study not only provides an understanding of what can be expected in such 
cases,$ but also the quantitative techniques/results needed to initiate such downstream calculations 
for a "blunt"-nosed collector (e.g. turbine blade or circular cylinder). 

While we have not dealt here with the complicating phenomena associated with particle inertia 
[typically encountered only for supermicron particles (e.g. Fernandez de la Mora & Rosner 1981) 
or the nondeterministic aspects of  turbulent gas and particle motion [i.e. effective particle diffusion 
(Rosner & Fernandez de la Mora 1982)], the insights obtained from the present analysis should 
also provide the necessary background against which analyses of  such situations can be fruitfully 
undertaken. In this way we hope the present theory contributes in a systematic way to the 
understanding and ultimate control of undesirable or desirable deposition phenomena encountered 
in the materials processing industries and in many energy conversion applications. 
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N O M E N C L A T U R E  

A = Function defined by [33] 
B = Function defined by [34] 
C = Damk6hler parameter (for nonequilibrium vapor scavenging) defined by [35] 

tAnalogous phenomena occur in the partitioning of dopant elements between the vapor phase and glass particulate phase 
in the deposition of optical waveguide preforms (Park & Rosner 1988). 

$1ndeed, we have recently shown that the observed effects of submicron MgO(s) particles on reducing the deposition 
rate of Na 2 SO4 (Rosner & Liang 1988) in a laboratory combustion environment correlated with the scavenging particle 
surface area per unit volume. 
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j "  

Y 
K 
L 

LP 

M~ 

n 

N. 
Pv 

D, = Vapor  diffusion coefficient (Fick) 
f =  Modified stream function, [10] 

r 
h = Normal ized  total particle radius (including condensate),  h - -  

rao 
= Local  mass flux at the wall 
= Dimensionless deposi t ion rate, [48] and [51] 
= Kelvin parameter ,  [40] 
= Mains t ream particle loading parameter  defined by [36] 
= Vapor iza t ion heat parameter  defined by [42] 
= Vapor  molecular  weight 

= Particle number  density ratio, n = 

= Particle number  density 
= Vapor  pressure 

Np,oo 

V 
Pr = Prandtl  number  o f  the carrier gas, diffusivity ratio = -  

~h 
r = Particle radius 

r:" = Local  mass rate o f  vapor  consumpt ion  per unit volume, [29] 
R = Universal gas constant  

s = Saturat ion ratio, s - 
[ t ~ v ~ ,  h = oo)] 

V 
Sc = Vapor  Schmidt  number  in the mixture, diffusivity ratio = -  

D,  

t = Time 
T = Local  temperature o f  the gas mixture 
ue = External (potential) flow velocity in the x-direct ion [6] 
v = Velocity field (u, v) 

x = Distance along the wall (measured f rom the s tagnat ion point) 
X = Defined by [62] 
y = Distance normal  to the wall 
Y = Defined by [63] 

Greek symbols 

~ T D p  
= "Norma l i zed"  thermophore t ic  diffusivity for particle migration,  ~ = 

V 

~h = Heat  (thermal) diffusivity o f  the carrier gas 
~m = Mass accommoda t ion  (condensation) coefficient, [2] 
~T = Thermal  diffusion factor  for a condensate  covered particle, [1] 
F = Funct ion  defined by [56] 
6x = Funct ion  defined by [21] 
5v = Funct ion  defined by [57] 
~/= Dimensionless distance f rom the wall, [9] 

T 
0 = Dimensionless absolute temperature  field, 0 = 

T~ 

A = Cons tan t  in [5] (molar  heat  o f  vapor izat ion o f  macroscopic  condensate)  
v = Gas  m o m e n t u m  diffusivity (kinematic viscosity) 
p = Mass density o f  mixture 
Pc = Condensate  "phase"  mass density (condensate mass per unit volume of  total space) 
a = Surface tension o f  the condensate  

= Stream function, [10] 

Pv o~v = Vapor  mass fraction, ~ov = 
P 

M.F. 14/I--H 
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Pc  
o~ c = Condensate mass fraction, to c =- 

P 
f~ = Vapor mass fraction normalized with respect to ogv, ~ 

~ "  = Nondimensional local vapor consumption rate, [53] 

Subscripts 

C =  

d p =  
L =  

hom nucl = 
p =  
T =  
V =  

W =  

Corresponding to the condensate (referred to the total volume) 
Dew point 
Corresponding to the condensate (liquid) 
Homogeneous nucleation 
Corresponding to the particles 
Thermophoretic 
Corresponding to the vapor 
At the wall (deposition surface) 
At mainstream 

Superscripts 

eq = Thermodynamic equilibrium value (VCE) 
' = Derivative with respect to r/ 

Abbreviations 

BL = Boundary layer 
div = Divergence (operator) 

FBL = "Frozen"  boundary layer (no phase change) 
grad = Spatial gradient (operator) 
LTE = Local thermodynamic equilibrium (VCE) 

ODE = Ordinary differential equation 
PDE = Partial differential equation 
r.h.s. = Right-hand side 
VCE = Vapor/condensate equilibrium 
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A P P E N D I X  

In this appendix we restrict ourselves to the case K = 0. As indicated in section 4, when the 
product CL is large, the present model must be refined because of the addition of a third region 
around the cold surface besides the two regions already considered in detail in section 3.1. Each 
region would be characterized by the following properties. 

Region 1 (undersaturated) for r /> ~/n (as indicated at the beginning of section 3.2), where IL < D.~ ~q 
and the vapor cannot condense on the particles. 
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Region 2 (supersaturated) for r/. I> r/i> r/eq (section 3.2), where s = 1 only at the boundaries of  
the region and s > 1 elsewhere. Here the particles scavenge as much vapor as they can, the 
governing equations are [64]-[66] with the boundary conditions [67]-[69] at r /=  r/,. 

Region 3 (equilibrium) for r/~q i> r//> 0, in which s = 1 everywhere. Here the particles capture as 
much vapor as is available, i.e. there is equilibrium-limited vapor scavenging. The vapor field 
equation for this third region is 

f~v(-r/) = f2~{0~cr/-)-), [A. 1] 

where the dependence on the radius ratio h has been omitted in f~p because we are considering 
the case K = 0 (negligible Kelvin effect). Using this value of  fly in [32] together with [18], the local 
vapor consumption rate f2v' defined by [53] becomes 

1 d 2 f ~ e v q ( d 0 " ~  2 ( Pr~da~, q dO [A.2] 
n-,~cr/_}= Sc dO 2 \ d q ]  + f "  1 - S c ]  dO dr/' 

with i2p(-O-} given by [39] and O(-r/-) by [20]. With this vapor consumption the equation for the 
normalized particle radius h becomes 

dh ~ "  
A dr/ 3Lnh z" [A.3] 

At the "interface" between the second and the third regions the following conditions should be 
satisfied: 

~r2v = ~'~q~0~r/eq_)_)., r/ = r/eq, [A.4] 

and 

d R  df~q dO 
@ n = n °q [A.5] 

dr/ dO dr/ 

and, also, the value of h should be continuous at r /=  r/eq. These conditions allow us to specify the 
positions of both r/n and r/~q. Using [A.1] and [39] the deposition of condensible material in vapor 
form, J r ,  becomes 

_ L,a L 'a I I 
l - 0 w  0 d p . ( ~ _ l ) . e x p [  (0-~ap 0-,)1" [A.6] 

Y" gc ~T-~w 

Observe that this is the same as the result corresponding to the LTEBL limit. The deposition rate 
of material condensed on the particles is still governed by [52]. 

In our calculation we have found that the value of  r/. decreases as C or L increases (keeping the 
other constant) and, for sufficiently large values of CL when the third region appears, the value 
of r/~q should increase with C or L. Therefore, for a certain finite value of CL the limit in which 
r/, = r/eq (and the second supersaturated region disappears) would be reached. The LTEBL limit 
would have been reached and a further increase in C or L will have no effect at all on the deposition 
rate results because local vapor consumption by the particles would then be equilibrium limited 
[cf. the case studied earlier by Castillo & Rosner (1988a)]. 


